1樓:浮生兀楚
青黴素可以破壞細菌的細胞壁,抑制細菌的繁殖和感染,對具有細胞壁的細菌具有廣譜效果。
2樓:mm喵喵兔
青黴素藥理作用是干擾細菌細胞壁的合成。青黴素的結構與細胞壁的成分粘肽結構中的d-丙氨醯-d-丙氨酸近似,可與後者競爭轉肽酶,阻礙粘肽的形成,造成細胞壁的缺損,使細菌失去細胞壁的滲透屏障,對細菌起到殺滅作用。
3樓:匿名使用者
從生物化學的角度分析,首先青黴素是非常強勢的一種酶類細菌,它的生長可以把其他任何真菌類都給滅掉,由此可見,青黴素有多麼的霸道,其次,青黴素對其他細菌具有抑制作用之外,還是比較便宜的一種製品,所以效果很好
4樓:匿名使用者
因為青黴素是廣譜抗生藥,對大多數的細菌有用,所以可以**多數的細菌感染。
5樓:匿名使用者
青黴素破壞細菌的細胞壁,而很多細菌都有細胞壁。
6樓:醉醉的微笑
因為青黴素是廣譜抗生素
青黴素適合**什麼疾病?
青黴素的發明過程
7樓:星何大大
研發歷史
20世紀40年代以前,人類一直未能掌握一種能高效**細菌**染且***小的藥物。當時若某人患了肺結核,那麼就意味著此人不久就會離開人世。為了改變這種局面,科研人員進行了長期探索,然而在這方面所取得的突破性進展卻源自乙個意外發現。
近代,2023年英國細菌學家弗萊明首先發現了世界上第一種抗生素—青黴素,亞歷山卓·弗萊明由於一次幸運的過失而發現了青黴素。
2023年,英國科學家fleming在實驗研究中最早發現了青黴素,但由於當時技術不夠先進,認識不夠深刻,fleming並沒有把青黴素單獨分離出來。
2023年,弗萊明發表了他的研究成果,遺憾的是,這篇**發表後一直沒有受到科學界的重視。
在用顯微鏡觀察這只培養皿時弗萊明發現,黴菌周圍的葡萄球菌菌落已被溶解。這意味著黴菌的某種分泌物能抑制葡萄球菌。此後的鑑定表明,上述黴菌為點青黴菌,因此弗萊明將其分泌的抑菌物質稱為青黴素。
然而遺憾的是弗萊明一直未能找到提取高純度青黴素的方法,於是他將點青黴菌菌株一代代地培養,並於2023年將菌種提供給準備系統研究青黴素的英國病理學家弗洛里(howard walter florey)和生物化學家錢恩。
2023年,德國化學家恩斯特錢恩在舊書堆裡看到了弗萊明的那篇**,於是開始做提純實驗。
弗洛里和錢恩在2023年用青黴素重新做了實驗。他們給8只小鼠注**致死劑量的鏈球菌,然後給其中的4只用青黴素**。
幾個小時內,只有那4只用青黴素**過的小鼠還健康活著。此後一系列臨床實驗證實了青黴素對鏈球菌、白喉桿菌等多種細菌感染的療效。
青黴素之所以能既殺死病菌,又不損害人體細胞,原因在於青黴素所含的青黴烷能使病菌細胞壁的合成發生障礙,導致病菌溶解死亡,而人和動物的細胞則沒有細胞壁。
2023年冬,錢恩提煉出了一點點青黴素,這雖然是乙個重大突破,但離臨床應用還差得很遠。
2023年,青黴素提純的接力棒傳到了澳大利亞病理學家瓦爾特弗洛里的手中。在美**方的協助下,弗洛里在飛行員外出執行任務時從各國機場帶回來的泥土中分離出菌種,使青黴素的產量從每立方厘公尺2單位提高到了40單位。
2023年前後英國牛津大學病理學家霍華德·弗洛里與生物化學家錢恩實現對青黴素的分離與純化,並發現其對傳染病的療效,但是青黴素會使個別人發生過敏反應,所以在應用前必須做皮試。
所用的抗生素大多數是從微生物培養液中提取的,有些抗生素已能人工合成。由於不同種類的抗生素的化學成分不一,因此它們對微生物的作用機理也很不相同,有些抑制蛋白質的合成,有些抑制核酸的合成,有些則抑制細胞壁的合成。
通過一段時間的緊張實驗,弗洛里、錢恩終於用冷凍乾燥法提取了青黴素晶體。之後,弗洛里在一種甜瓜上發現了可供大量提取青黴素的黴菌,並用玉公尺粉調製出了相應的培養液。在這些研究成果的推動下,美國製藥企業於2023年開始對青黴素進行大批量生產。
到了2023年,製藥公司已經發現了批量生產青黴素的方法。當時英國和美國正在和納粹德國交戰。這種新的藥物對控制傷口感染非常有效。
2023年10月,弗洛里和美**方簽訂了首批青黴素生產合同。青黴素在二戰末期橫空出世,迅速扭轉了盟國的戰局。戰後,青黴素更得到了廣泛應用,拯救了數以千萬人的生命。
到2023年,藥物的**已經足夠**第二次世界大戰期間所有參戰的盟軍士兵。
因這項偉大發明,2023年,弗萊明、弗洛里和錢恩因「發現青黴素及其臨床效用」而共同榮獲了諾貝爾生理學或醫學獎。
2023年,英國化學家霍奇金(d.c.hodgkin)用x射線衍射法測出了青黴素的分子結構。
2023年9月5日,中國第一批國產青黴素誕生,揭開了中國生產抗生素的歷史。截至2023年年底,中國的青黴素年產量已佔世界青黴素年總產量的60%,居世界首位。
2023年,birol等人提出了基於過程機理的模型,該過程綜合考慮了發酵中微生物的各種生理變化,發現這是個十分複雜的過程。為了更加方便地對青黴素過程進行研究,birol對bajpai和reuss提出的非結構式模型進行了擴充套件,對模型進一步簡化,方便研究。
青黴素(penicillin,或音譯盤尼西林)又被稱為青黴素g、peillin g、 盤尼西林、配尼西林、青黴素鈉、苄青黴素鈉、青黴素鉀、苄青黴素鉀。
青黴素是抗菌素的一種,是指分子中含有青黴烷、能破壞細菌的細胞壁並在細菌細胞的繁殖期起殺菌作用的一類抗生素,是由青黴菌中提煉出的抗生素。
青黴素屬於β-內醯胺類抗生素(β-lactams),β-內醯胺類抗生素包括青黴素、頭孢菌素、碳青黴烯類、單環類、頭黴素類等。青黴素是很常用的抗菌藥品。但每次使用前必須做皮試,以防過敏。
主要功能
青黴素是一種高效、低毒、臨床應用廣泛的重要抗生素。
它的研製成功大大增強了人類抵抗細菌**染的能力,帶動了抗生素家族的誕生。它的出現開創了用抗生素**疾病的新紀元。
通過數十年的完善,青黴素針劑和口服青黴素已能分別**肺炎、腦膜炎、心內膜炎、白喉、炭疽等病。繼青黴素之後,鏈黴素、氯黴素、土黴素、四環素等抗生素不斷產生,增強了人類**傳染性疾病的能力。但與此同時,部分病菌的抗藥性也在逐漸增強。
為了解決這一問題,科研人員目前正在開發藥效更強的抗生素,探索如何阻止病菌獲得抵抗基因,並以植物為原料開發抗菌類藥物。
青黴素它不能耐受耐藥菌株(如耐藥金葡)所產生的酶,易被其破壞,且其抗菌譜較窄,主要對革蘭氏陽性菌有效。青黴素g有鉀鹽、鈉鹽之分,鉀鹽不僅不能直接靜注,靜脈滴注時,也要仔細計算鉀離子量,以免注入人體形成高血鉀而抑制心臟功能,造成死亡。
青黴素類抗生素的毒性很小,由於β-內醯胺類作用於細菌的細胞壁,而人類只有細胞膜無細胞壁,故對人類的毒性較小,除能引起嚴重的過敏反應外,在一般用量下,其毒性不甚明顯。
使用該品必須先做皮內試驗。青黴素過敏試驗包括**試驗方法(簡稱青黴素皮試)及體外試驗方法,其中以皮內注射較準確。
皮試本身也有一定的危險性,約有25%的過敏性休克死亡的病人死於皮試。所以皮試或注射給藥時都應作好充分的搶救準備。
在換用不同批號青黴素時,也需重作皮試。幹粉劑可儲存多年不失效,但注射液、皮試液均不穩定,以新鮮配製為佳。而且對於自腎排洩,腎功能不良者,劑量應適當調整。
此外,區域性應用致敏機會多,且細菌易產生抗藥性,故不提倡。
8樓:秦也抱只貓
青黴素的發現者是英國細菌學家弗萊明。
2023年的一天,弗萊明在他的一間簡陋的實驗室裡研究導致人體發熱的葡萄球菌。由於蓋子沒有蓋好,他發覺培養細菌用的瓊脂上附了一層青黴菌。這是從樓上的一位研究青黴菌的學者的視窗飄落進來的。
使弗萊明感到驚訝的是,在青黴菌的近旁,葡萄球菌忽然不見了。這個偶然的發現深深吸引了他,他設法培養這種黴菌進行多次試驗,證明青黴素可以在幾小時內將葡萄球菌全部殺死。
弗萊明據此發明了葡萄球菌的克星—青黴素。
9樓:青少年的紅星
在2023年夏弗萊明外出度假時,把實驗室裡在培養皿中正生長著細菌這件事給忘了。3週後當他回實驗室時,注意到 乙個與空氣意外置觸過的金黃色葡萄球菌培養皿中長出了一團青綠色黴菌。在用顯微鏡觀察這只培養皿時弗萊明發現,黴菌周圍的葡萄球菌菌落已被溶解。
這意味著黴菌的某種分泌物能抑制葡萄球菌。此後的鑑定表明,上述黴菌為點青黴菌,因此弗萊明將其分泌的抑菌物質稱為青黴素。然而遺憾的是弗萊明一直未能找到提取高純度青黴素的方法,於是他將點青黴菌菌株一代代地培養,並於2023年將菌種提供給準備系統研究青黴素的英國病理學家弗洛里(howard walter florey)和生物化學家錢恩。
通過一段時間的緊張實驗,弗洛里、錢恩終於用冷凍乾燥法提取了青黴素晶體。之後,弗洛里在一種甜瓜上發現了可供大量提取青黴素的黴菌,並用玉公尺粉調製出了相應的培養液。弗洛里和錢恩在2023年用青黴素重新做了實驗。
他們給8只小鼠注**致死劑量的鏈球菌,然後給其中的4只用青黴素**。幾個小時內,只有那4只用青黴素**過的小鼠還健康活著。「這真像乙個奇蹟!
」弗洛里說道。此後一系列臨床實驗證實了青黴素對鏈球菌、白喉桿菌等多種細菌感染的療效。青黴素之所以能既殺死病菌,又不損害人體細胞,原因在於青黴素所含的青黴烷能使病菌細胞壁的合成發生障礙,導致病菌溶解死亡,而人和動物的細胞則沒有細胞壁。
但是青黴素會使個別人發生過敏反應,所以在應用前必須做皮試。在這些研究成果的推動下,美國製藥企業於2023年開始對青黴素進行大批量生產。到了2023年,製藥公司已經發現了批量生產青黴素的方法。
當時英國和美國正在和納粹德國交戰。這種新的藥物對控制傷口感染非常有效。到2023年,藥物的**已經足夠**第二次世界大戰期間所有參戰的盟軍士兵。
二戰宣傳畫:感謝青黴素,傷兵可以安然回家
2023年,弗萊明、弗洛里和錢恩因「發現青黴素及其臨床效用」而共同榮獲了諾貝爾生理學或醫學獎。
10樓:匿名使用者
20世紀40年代以前,人類一直未能掌握一種能高效**細菌**染且***小的藥物。當時若某人患了肺結核,那麼就意味著此人不久就會離開人世。為了改變這種局面,科研人員進行了長期探索,然而在這方面所取得的突破性進展卻源自乙個意外發現。
亞歷山卓·弗萊明由於一次幸運的過失而發現了青黴素。 在2023年夏弗萊明外出度假時,把實驗室裡在培養皿中正生長著細菌這件事給忘了。3週後當他回實驗室時,注意到 乙個與空氣意外置觸過的金黃色葡萄球菌培養皿中長出了一團青綠色黴菌。
在用顯微鏡觀察這只培養皿時弗萊明發現,黴菌周圍的葡萄球菌菌落已被溶解。這意味著黴菌的某種分泌物能抑制葡萄球菌。此後的鑑定表明,上述黴菌為點青黴菌,因此弗萊明將其分泌的抑菌物質稱為青黴素。
然而遺憾的是弗萊明一直未能找到提取高純度青黴素的方法,於是他將點青黴菌菌株一代代地培養,並於2023年將菌種提供給準備系統研究青黴素的英國病理學家弗洛里(howard walter florey)和生物化學家錢恩。 通過一段時間的緊張實驗,弗洛里、錢恩終於用冷凍乾燥法提取了青黴素晶體。之後,弗洛里在一種甜瓜上發現了可供大量提取青黴素的黴菌,並用玉公尺粉調製出了相應的培養液。
弗洛里和錢恩在2023年用青黴素重新做了實驗。他們給8只小鼠注**致死劑量的鏈球菌,然後給其中的4只用青黴素**。幾個小時內,只有那4只用青黴素**過的小鼠還健康活著。
「這真像乙個奇蹟!」弗洛里說道。此後一系列臨床實驗證實了青黴素對鏈球菌、白喉桿菌等多種細菌感染的療效。
青黴素之所以能既殺死病菌,又不損害人體細胞,原因在於青黴素所含的青黴烷能使病菌細胞壁的合成發生障礙,導致病菌溶解死亡,而人和動物的細胞則沒有細胞壁。但是青黴素會使個別人發生過敏反應,所以在應用前必須做皮試。在這些研究成果的推動下,美國製藥企業於2023年開始對青黴素進行大批量生產。
到了2023年,製藥公司已經發現了批量生產青黴素的方法。當時英國和美國正在和納粹德國交戰。這種新的藥物對控制傷口感染非常有效。
到2023年,藥物的**已經足夠**第二次世界大戰期間所有參戰的盟軍士兵。 二戰宣傳畫:感謝青黴素,傷兵可以安然回家
2023年,弗萊明、弗洛里和錢恩因「發現青黴素及其臨床效用」而共同榮獲了諾貝爾生理學或醫學獎。
從生物化學的角度說明為什麼攝入糖量過多容易發胖
攝入的醣類本來用作氧化分解供能的。過多的攝入會使糖分解不完,剩餘的糖會轉化成脂肪儲存能量,自然你就長胖了。當然如果糖剩的太多的話也會隨著尿液排出體外的。高糖飲食能使乙醯輔酶a羧化酶活性增高,促使合成脂肪的脂肪酸合成量增大 攝入的糖過量後,除去自身代謝消耗,剩餘的轉化成脂肪儲存起來。肥胖的主要原因就是...
生物化學nadph代表什麼意思,生物化學中NADH是什麼意思
nadph 是一種輔bai酶du,叫還原型zhi輔酶 學名還原型烟醯胺腺嘌呤dao二核苷酸磷酸,專曾經被稱為三磷酸吡啶屬核苷酸,英文triphosphopyridine nucleotide,使用縮寫tpn,亦寫作 h 亦叫作還原氫。n指烟醯胺,a指腺嘌呤,d是二核苷酸,p是磷酸基團。分子量為833...
生物化學中的bp是什麼單位,生物化學核小體由什麼組成,如何形成
bp是dna和rna的單位。bp是指鹼基對。鹼基對是形成dna rna單體以及編碼遺傳資訊的化學結構。鹼基對是一對相互匹配的鹼基 即a t,g c,a u相互作用 被氫鍵連線起來。然而,它常被用來衡量dna和rna的長度 儘管rna是單鏈 它還與核苷酸互換使用,儘管後者是由乙個五碳糖 磷酸和乙個鹼基...