機器學習需要什麼數學基礎,機器學習需要哪些數學基礎

2021-03-27 15:36:09 字數 3063 閱讀 3649

1樓:cda資料分析師

然後我們說一下概率統計,在評價過程中,我們需要使用到概率統計。概率統計包括了兩個方面,一方面是數理統計,另外一方面是概率論。一般來說數理統計比較好理解,我們機器學習當中應用的很多模型都是**於數理統計。

像最簡單的線性回歸,還有邏輯回歸,它實際上都是**於統計學。在具體地給定了目標函式之後,我們在實際地去評價這個目標函式的時候,我們會用到一些概率論。當給定了乙個分布,我們要求解這個目標函式的期望值。

在平均意義上,這個目標函式能達到什麼程度呢?這個時候就需要使用到概率論。所以說在評價這個過程中,我們會主要應用到概率統計的一些知識。

最後我們說一下最優化理論,其實關於優化,就不用說了,我們肯定用到的是最優化理論。在最優化理論當中,主要的研究方向是凸優化。凸優化當然它有些限制,但它的好處也很明顯,比如說能夠簡化這個問題的解。

因為在優化當中我們都知道,我們要求的是乙個最大值,或者是最小值,但實際當中我們可能會遇到一些區域性的極大值,區域性的極小值,還有鞍點這樣的點。凸優化可以避免這個問題。在凸優化當中,極大值就是最大值,極小值也就是最小值。

但在實際當中,尤其是引入了神經網路還有深度學習之後,凸優化的應用範圍越來越窄,很多情況下它不再適用,所以這裡面我們主要用到的是無約束優化。同時,在神經網路當中應用最廣的乙個演算法,乙個優化方法,就是反向傳播。

機器學習需要哪些數學基礎

2樓:cda資料分析師

然後我們說一下概率統計,在評價過程中,我們需要使用到概率統計。概率統計包括了兩個方面,一方面是數理統計,另外一方面是概率論。一般來說數理統計比較好理解,我們機器學習當中應用的很多模型都是**於數理統計。

像最簡單的線性回歸,還有邏輯回歸,它實際上都是**於統計學。在具體地給定了目標函式之後,我們在實際地去評價這個目標函式的時候,我們會用到一些概率論。當給定了乙個分布,我們要求解這個目標函式的期望值。

在平均意義上,這個目標函式能達到什麼程度呢?這個時候就需要使用到概率論。所以說在評價這個過程中,我們會主要應用到概率統計的一些知識。

最後我們說一下最優化理論,其實關於優化,就不用說了,我們肯定用到的是最優化理論。在最優化理論當中,主要的研究方向是凸優化。凸優化當然它有些限制,但它的好處也很明顯,比如說能夠簡化這個問題的解。

因為在優化當中我們都知道,我們要求的是乙個最大值,或者是最小值,但實際當中我們可能會遇到一些區域性的極大值,區域性的極小值,還有鞍點這樣的點。凸優化可以避免這個問題。在凸優化當中,極大值就是最大值,極小值也就是最小值。

但在實際當中,尤其是引入了神經網路還有深度學習之後,凸優化的應用範圍越來越窄,很多情況下它不再適用,所以這裡面我們主要用到的是無約束優化。同時,在神經網路當中應用最廣的乙個演算法,乙個優化方法,就是反向傳播。

3樓:寄秋殘葉

數學分析(高等數學)

線性代數(矩陣論、矩陣分析、矩陣分解、矩陣微積分)概率論(貝葉斯、數理統計、最大熵、多元正態分佈、隨機過程、馬爾科夫)凸優化理論

資訊理論初步

目前能想起來這些,部落格、書籍、公開課都不錯

對人工智慧很感興趣,打算學習,請問需要什麼數學基礎?

4樓:匿名使用者

好吧bai

。。之前兩個回答du

明顯是copy過來的。。zhi。但講的大概是對的。dao。。

目前回國內比較熱門的應該有機答器學習(ml),資料探勘(dm),自然語言處理(nlp),這些方向國內還是比較強的,因為不依賴硬體,純理論和軟體。其他方向比如智慧型機械人,生物智慧型,這些比較依賴硬體實力,國內相對較弱,歐美日這些方面比較強。看以後是準備在國內還是國外發展而定(當然外國ml,dm,nlp也很強。。

只是國內相對來說比較好。。)

有一點是肯定的,絕大部分理工科,數學都是要求非常高的。。。當然我說的是研究,如果是做ai方向的程式設計師的話,要求不是很高。。。ai的所有方向都會用到線性代數,概率論。

至於樓上說的什麼離散數學,微積分,用是用的到 不過並不是非常難,因為他們只是基礎 某個函式你知道怎麼積分就行了,沒有太多難處。。切身感覺是,概率論非常非常重要,基本上人工智慧裡面的「智慧型」就靠概率來實現。。。。(生物智慧型不是很了解 不過也應該是差不多)

5樓:熱情的

需要必備的知識有:

1、線性代數:如何將研究物件形式化?

2、概率論:如何描

内述統計規律?

3、數理統容計:如何以小見大?

4、最優化理論: 如何找到最優解?

5、資訊理論:如何定量度量不確定性?

6、形式邏輯:如何實現抽象推理?

7、線性代數:如何將研究物件形式化?

人工智慧簡介:

1、人工智慧(artificial intelligence),英文縮寫為ai。

2、它是研究、開發用於模擬、延伸和擴充套件人的智慧型的理論、方法、技術及應用系統的一門新的技術科學。

人工智慧涉及的學科:

哲學和認知科學,數學,神經生理學,心理學,電腦科學,資訊理論,控制論,不定性論,仿生學,社會結構學與科學發展觀。

6樓:cda資料分析師

人工bai智慧型技術歸根到底都建立du在數學模zhi型之上,要了解人dao工智慧型,首先要掌握內

必備的數容學基礎知識,具體來說包括:

線性代數:如何將研究物件形式化?

概率論:如何描述統計規律?

數理統計:如何以小見大?

最優化理論: 如何找到最優解?

資訊理論:如何定量度量不確定性?

形式邏輯:如何實現抽象推理?

7樓:朱軍號

1.命題

邏輯和謂詞邏輯 2.多值邏輯 3.概率論 4.

模糊理論 數理邏輯、離散數學、微積分回是絕對重要答的。 人工智慧有很多分支,從各分支的總和來看,幾乎所有的數學都是重要的。不過不論你將從事哪些分支的研究,有幾項始終是重要的:

數理邏輯、離散數學、微積分。對ai理論研究,需要很深的邏輯;象模態邏輯、時序邏輯等等非經典邏輯,還需要範疇學。對傳統符號式機器學習,需要數理邏輯和離散數學、概率統計。

對連線主義機器學習,需要概率統計、微積分。對強化學習和agent,需要邏輯和運籌學。 祝你在學習中取得進步。

想從事工業機械人行業,請問下需要什麼基礎,需要學習哪些知識

學習工業機械人,需要學習電工基礎 模數電 c語言 cad 電力拖動 微控制器技術 plc技術等。這些你會了嗎?廣州粵為工業機械人培訓學院比較可以。請問想從事vr設計需要學習什麼知識?需要有什麼基礎?你好,如今vr虛擬實境技術會是未來乙個風口,所以很多人都想進入這個行業。參加vr虛擬實境培訓 專時需屬...

學it需要什麼基礎嗎,學IT需要什麼基礎嗎

基本上英語要bai懂一些,初中水平就可du以。然後就zhi是一些判斷思維 dao邏輯 統籌思想。單純學程式語言本身,小學生都可以學,對於一些英文符號,你只需要記憶,不需要理解 當然能理解有助於學習,不理解也可以程式設計,無障礙 長沙新華電腦學院學it是零基礎零起步的 而且還包就業分配的 現在的話,學...

學習插畫最基礎的是什麼,學插畫需要什麼基礎

想要系統的學習可以考慮報乙個網路直播課,推薦cgwang的網路課。老師講得細,上完還可以回看,還有同型別錄播課可以免費學 贈送終身vip 自製能力相對較弱的話,建議還是去好點的培訓機構,實力和規模在國內排名前幾的大機構,推薦行業龍頭 王氏教育。王氏教育全國直營校區面授課程試聽 複製後面鏈結在瀏覽器也...