簡述定積分二重三重積分的聯絡

2021-03-07 10:09:11 字數 7490 閱讀 2470

1樓:匿名使用者

我把我以前答過的那篇文章拿出來了。

一重積分(定積分):只有乙個自變數y = f(x)

當被積函式為1時,就是直線的長度(自由度較大)

∫(a→b) dx = l(直線長度)

被積函式不為1時,就是圖形的面積(規則)

∫(a→b) f(x) dx = a(平面面積)

另外,定積分也可以求規則的旋轉體體積,分別是

盤旋法(disc method):v = π∫(a→b) f²(x) dx

圓殼法(shell method):v = 2π∫(a→b) xf(x) dx

計算方法有換元積分法,極座標法等,定積分接觸得多,不詳說了

∫(α→β) (1/2)[a(θ)]² dθ = a(極座標下的平面面積)

二重積分:有兩個自變數z = f(x,y)

當被積函式為1時,就是面積(自由度較大)

∫(a→b) ∫(c→d) dxdy = a(平面面積)

當被積函式不為1時,就是圖形的體積(規則)、和旋轉體體積

∫(a→b) ∫(c→d) dxdy = v(旋轉體體積)

計算方法有直角座標法、極座標法、雅可比換元法等

極座標變換:{ x = rcosθ

{ y = rsinθ

{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π

∫(α→β) ∫(h→k) f(rcosθ,rsinθ) r drdθ

三重積分:有三個自變數u = f(x,y,z)

被積函式為1時,就是體積、旋轉體體積(自由度最大)

∫(a→b) ∫(c→d) ∫(e→f) dxdydz = v(旋轉體體積)

當被積函式不為1時,就沒有幾何意義了,有物理意義等

計算方法有直角座標法、柱座標切片法、柱座標投影法、球面座標法、雅可比換元法等

極座標變化(柱座標):{ x = rcosθ

{ y = rsinθ

{ z = z

{ h ≤ r ≤ k

{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π

∫(α→β) ∫(h→k) ∫(z₁→z₂) f(rcosθ,rsinθ,z) r dzdrdθ

極座標變化(球座標):{ x = rsinφcosθ

{ y = rsinφsinθ

{ z = rcosφ

{ h ≤ r ≤ k

{ a ≤ φ ≤ b、最大範圍:0 ≤ φ ≤ π

{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π

∫(α→β) ∫(a→b) ∫(h→k) f(rsinφcosθ,rsinφsinθ,rcosφ) r²sin²φ drdφdθ

所以越上一級,能求得的空間範圍也越自由,越廣泛,但也越複雜,越棘手,而

且限制比上面兩個都少,對空間想象力提高了。

重積分能化為幾次定積分,每個定積分能控制不同的伸展方向。

又比如說,在a ≤ x ≤ b裡由f(x)和g(x)圍成的面積,其中f(x) > g(x)

用定積分求的面積公式是∫(a→b) [f(x) - g(x)] dx

但是公升級的二重積分,面積公式就是∫(a→b) dx ∫(g(x)→f(x)) dx、被積函式變為1了

用不同積分層次計算由z = x² + y²、z = a²圍成的體積?

一重積分(定積分):向zox面投影,得z = x²、令z = a² --> x = ± a、採用圓殼法

v = 2πrh = 2π∫(0→a) xz dx = 2π∫(0→a) x³ dx = 2π • (1/4)[ x⁴ ] |(0→a) = πa⁴/2

二重積分:高為a、將z = x² + y²向xoy面投影得x² + y² = a²

所以就是求∫∫(d) (x² + y²) dxdy、其中d是x² + y² = a²

v = ∫∫(d) (x² + y²) dxdy = ∫(0→2π) dθ ∫(0→a) r³ dr、這步你會發覺步驟跟一重定積分一樣的

= 2π • (1/4)[ r⁴ ] |(0→a) = πa⁴/2

三重積分:旋轉體體積,被積函式是1,直接求可以了

柱座標切片法:dz:x² + y² = z

v = ∫∫∫(ω) dxdydz

= ∫(0→a²) dz ∫∫dz dxdy

= ∫(0→a²) πz dz

= π • [ z²/2 ] |(0→a²)

= πa⁴/2

柱座標投影法:dxy:x² + y² = a²

v = ∫∫∫(ω) dxdydz

= ∫(0→2π) dθ ∫(0→a) r dr ∫(r²→a²) dz

= 2π • ∫(0→a) r • (a² - r²) dr

= 2π • [ a²r²/2 - (1/4)r⁴ ] |(0→a)

= 2π • [ a⁴/2 - (1/4)a⁴ ]

= πa⁴/2

三重積分求體積時能用的方法較多,就是所說的高自由度。

既然都說了這麼多,再說一點吧:

如果再學下去的話,你會發現求(平面)面積、體積 比 求(曲面)面積的公式容易

學完求體積的公式,就會有求曲面的公式

就是「曲線積分」和「曲面積分」,又分「第一類」和「第二類」

當被積函式為1時,第一類曲線積分就是求弧線的長度,對比定積分只能求直線長度

∫(c) ds = l(曲線長度)

被積函式不為1時,就是求以弧線為底線的曲面的面積

∫(c) f(x,y) ds = a(曲面面積)

當被積函式為1時,第一類曲面積分就是求曲面的面積,對比二重積分只能求平面面積

∫∫(σ) ds = a(曲面面積)、自由度比第一類曲線積分大

∫∫(σ) f(x,y,z) ds,物理應用、例如曲面的質量、重心、轉動慣量、流速場流過曲面的流量等

而第二類曲線積分/第二類曲面積分以物理應用為主要,而且是有"方向性"的,涉及向量範圍了。

2樓:安柏林

簡單點說就是緯度的問題。定積分是求線下面積著你應該了解了,二重積分就是求體積,這個就不是求導了,而是求偏導數了。三重積分我也沒搞明白,就只在證明球體表面積時候用到過。

希望可以幫到你,望採納謝謝

3樓:匿名使用者

在幾何意義上,定積分求的是曲邊梯形的面積,二重積分求的是曲頂柱體的體積,三重積分求的是立體的密度

定積分與二重積分,三重積分的區別與聯絡是什麼,急,**等 20

4樓:阿樓愛吃肉

定積分與二重積分、三重積分有3點不同

:一、三者的概述不同:

1、定積分的概述:定積分是積分的一種,是函式f(x)在區間[a,b]上積分和的極限。

2、二重積分的概述:二重積分是二元函式在空間上的積分,同定積分類似,是某種特定形式的和的極限。本質是求曲頂柱體體積。

重積分有著廣泛的應用,可以用來計算曲面的面積,平面薄片重心等。

3、三重積分的概述:設三元函式f(x,y,z)在區域ω上具有一階連續偏導數,將ω任意分割為n個小區域,每個小區域的直徑記為rᵢ(i=1,2,...,n)。

體積記為δδᵢ,||t||=max,在每個小區域內取點f(ξᵢ,ηᵢ,ζᵢ),作和式σf(ξᵢ,ηᵢ,ζᵢ)δδᵢ,若該和式當||t||→0時的極限存在且唯一(即與ω的分割和點的選取無關);

則稱該極限為函式f(x,y,z)在區域ω上的三重積分,記為∫∫∫f(x,y,z)dv,其中dv=dxdydz。

二、三者的幾何意義不同:

1、定積分的幾何意義:表示平面圖形的面積。

2、二重積分的幾何意義:表示曲頂柱體體積。

3、三重積分的幾何意義:表示立體的質量。

三、三者的注意事項不同:

1、定積分的注意事項:乙個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。乙個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。

2、二重積分的注意事項:平面區域的二重積分可以推廣為在高維空間中的(有向)曲面上進行積分,稱為曲面積分。

3、三重積分的注意事項:當積分函式為1時,就是其密度分布均勻且為1,質量就等於其體積值。當積分函式不為1時,說明密度分布不均勻。

定積分與二重積分、三重積分均是高等數學中重要內容,其中,定積分是學習二重積分、三重積分的基礎。

5樓:高數線代程式設計狂

問題很抽象。

從變數維度區分:

一般的定積分指的一元函式積分;二重積分是二元函式的積分,三重積分是三元函式的積分。

從幾何意義來說:

一般定積分是求面積;二重積分求曲頂柱體體積,三重積分求空間封閉區域體積

6樓:她鄉的**

從應用上來說,定積分用來算曲邊梯形面積;二重積分可以算空間旋轉體的面積於體積,我覺得二重積分其實是針對旋轉體的,因為空間體是三維的,需要xyz三個座標表示,但是旋轉體的特性便是根據xy平面上的旋轉面的資料就可以推算旋轉體的體積於面積,所以就有了二重積分。比如由直角三角形繞直角邊旋轉一周得到圓錐體的體積面積計算;三重積分就是來算二重積分無法計算的非旋轉體的體積。比如三菱錐。

簡述我們所學積分(定積分,二重三重積分,第一類第二類曲線積分)的聯絡和區別

7樓:匿名使用者

我把我以前答過的那篇文章拿出來了。

一重積分(定積分):只有乙個自變數y = f(x)

當被積函式為1時,就是直線的長度e68a8462616964757a686964616f31333339666639(自由度較大)

∫(a→b) dx = l(直線長度)

被積函式不為1時,就是圖形的面積(規則)

∫(a→b) f(x) dx = a(平面面積)

另外,定積分也可以求規則的旋轉體體積,分別是

盤旋法(disc method):v = π∫(a→b) f²(x) dx

圓殼法(shell method):v = 2π∫(a→b) xf(x) dx

計算方法有換元積分法,極座標法等,定積分接觸得多,不詳說了

∫(α→β) (1/2)[a(θ)]² dθ = a(極座標下的平面面積)

二重積分:有兩個自變數z = f(x,y)

當被積函式為1時,就是面積(自由度較大)

∫(a→b) ∫(c→d) dxdy = a(平面面積)

當被積函式不為1時,就是圖形的體積(規則)、和旋轉體體積

∫(a→b) ∫(c→d) dxdy = v(旋轉體體積)

計算方法有直角座標法、極座標法、雅可比換元法等

極座標變換:{ x = rcosθ

{ y = rsinθ

{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π

∫(α→β) ∫(h→k) f(rcosθ,rsinθ) r drdθ

三重積分:有三個自變數u = f(x,y,z)

被積函式為1時,就是體積、旋轉體體積(自由度最大)

∫(a→b) ∫(c→d) ∫(e→f) dxdydz = v(旋轉體體積)

當被積函式不為1時,就沒有幾何意義了,有物理意義等

計算方法有直角座標法、柱座標切片法、柱座標投影法、球面座標法、雅可比換元法等

極座標變化(柱座標):{ x = rcosθ

{ y = rsinθ

{ z = z

{ h ≤ r ≤ k

{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π

∫(α→β) ∫(h→k) ∫(z₁→z₂) f(rcosθ,rsinθ,z) r dzdrdθ

極座標變化(球座標):{ x = rsinφcosθ

{ y = rsinφsinθ

{ z = rcosφ

{ h ≤ r ≤ k

{ a ≤ φ ≤ b、最大範圍:0 ≤ φ ≤ π

{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π

∫(α→β) ∫(a→b) ∫(h→k) f(rsinφcosθ,rsinφsinθ,rcosφ) r²sin²φ drdφdθ

所以越上一級,能求得的空間範圍也越自由,越廣泛,但也越複雜,越棘手,而

且限制比上面兩個都少,對空間想象力提高了。

重積分能化為幾次定積分,每個定積分能控制不同的伸展方向。

又比如說,在a ≤ x ≤ b裡由f(x)和g(x)圍成的面積,其中f(x) > g(x)

用定積分求的面積公式是∫(a→b) [f(x) - g(x)] dx

但是公升級的二重積分,面積公式就是∫(a→b) dx ∫(g(x)→f(x)) dx、被積函式變為1了

用不同積分層次計算由z = x² + y²、z = a²圍成的體積?

一重積分(定積分):向zox面投影,得z = x²、令z = a² --> x = ± a、採用圓殼法

v = 2πrh = 2π∫(0→a) xz dx = 2π∫(0→a) x³ dx = 2π • (1/4)[ x⁴ ] |(0→a) = πa⁴/2

二重積分:高為a、將z = x² + y²向xoy面投影得x² + y² = a²

所以就是求∫∫(d) (x² + y²) dxdy、其中d是x² + y² = a²

v = ∫∫(d) (x² + y²) dxdy = ∫(0→2π) dθ ∫(0→a) r³ dr、這步你會發覺步驟跟一重定積分一樣的

= 2π • (1/4)[ r⁴ ] |(0→a) = πa⁴/2

三重積分:旋轉體體積,被積函式是1,直接求可以了

柱座標切片法:dz:x² + y² = z

v = ∫∫∫(ω) dxdydz

= ∫(0→a²) dz ∫∫dz dxdy

= ∫(0→a²) πz dz

= π • [ z²/2 ] |(0→a²)

= πa⁴/2

柱座標投影法:dxy:x² + y² = a²

v = ∫∫∫(ω) dxdydz

= ∫(0→2π) dθ ∫(0→a) r dr ∫(r²→a²) dz

= 2π • ∫(0→a) r • (a² - r²) dr

= 2π • [ a²r²/2 - (1/4)r⁴ ] |(0→a)

= 2π • [ a⁴/2 - (1/4)a⁴ ]

= πa⁴/2

三重積分求體積時能用的方法較多,就是所說的高自由度。

既然都說了這麼多,再說一點吧:

如果再學下去的話,你會發現求(平面)面積、體積 比 求(曲面)面積的公式容易

學完求體積的公式,就會有求曲面的公式

就是「曲線積分」和「曲面積分」,又分「第一類」和「第二類」

當被積函式為1時,第一類曲線積分就是求弧線的長度,對比定積分只能求直線長度

∫(c) ds = l(曲線長度)

被積函式不為1時,就是求以弧線為底線的曲面的面積

∫(c) f(x,y) ds = a(曲面面積)

當被積函式為1時,第一類曲面積分就是求曲面的面積,對比二重積分只能求平面面積

∫∫(σ) ds = a(曲面面積)、自由度比第一類曲線積分大

∫∫(σ) f(x,y,z) ds,物理應用、例如曲面的質量、重心、轉動慣量、流速場流過曲面的流量等

而第二類曲線積分/第二類曲面積分以物理應用為主要,而且是有"方向性"的,涉及向量範圍了。

二重積分與三重積分的區別與聯絡討論定積分與二重積分,三重積分的共同點和不同點

定積分與二重積積分與三重積分有三個區別 一 主要觀點 1 定積分概述 定積分作為積分,是函式f x 在區間 a,b 內的積分和的極限。2 二重積分概述 二重積分是空間中二元函式的積分,類似於定積分,以及特定形式和的極限。其實質是求出頂部彎曲圓柱體的體積。多積分被廣泛應用於計算平面切片的表面積和重心。...

急於求知求二重積分三重積分的具體含義

定積分是二維座標中面積,二重積分是三維座標中曲面面積,三重積分是三維座標中曲頂柱體體積 二重積分和三重積分的幾何意義,物理意義分別是什麼?定積分的幾何意義是曲邊梯形的有向面積,物理意義是變速直線運動的路程或變力所做的功。二重積分的幾何意義是曲頂柱體的有向體積,物理意義是加在平面面積上壓力 壓強可變 ...

一重積分得面積,二重積分得體積,三重積分得什麼啊?如題謝謝

高數沒學吧?當然求質量 轉動慣性 好像是 在數學裡線段也是有質量滴,詳細的在高數下裡 關於一元積分求面積體積問題 需要把已知的常用的一些圖形以及參方程記下來 取幾個特殊的點,把草圖做出來 沒有其他捷徑。二重積分既能算面積又能求體積?那我怎麼知道求的是面積還是體積?與三重積分體積有什麼不同?單從幾何意...